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The principle of ECAP technique is illustrated in Fig.1. It 
consists of two equal channels intersect a particular angle 
called die angle ( ) and the arc of curvature ( ) subtended 
at the point of channel intersection. Sample was pressed 
through die channel using plunger or ram to impose large 
plastic strain with the same cross-sectional area by 
neglecting the end effects into the sample [11]. The total 
strain of the material has been calculated by using the 
equation (1). After ‘n’ number of passes the accumulated 
strain becomes n×ε [10]. 
 

ε =   

1
2 co t co s

2 2 2 23
ec

             
     ……….. (1) 

 

Where ε is total strain,    is die angle,   is outer arc 
curvature. 
             
On other hand, four basic fundamental routes involved 
while processing the ECAP. They are route A, route Ba, 
route Bc, and route C [1]. There is no specimen rotation in 
route A, the specimen is rotated 900 between consecutive 
passes in route Ba, the specimen is rotated 900 
counterclockwise direction in consecutive passes in route 
Bc, and the specimen is rotated 1800 between each pass in 
route C.  

2 EXPERIMENTAL PROCEDURE 
ECAP experiment was performed using die angle of 1200 
and the arc of curvature of 300 to reduce the dead zone of 
the materials. The present configuration of die was 
designed to give an approximate strain of 0.7 on each 
pressing. Specimens were prepared from as-received 
materials into required circular shape with a diameter of 
16mm and a length of 80mm. Then these specimens were 
pressed through the channel at different working 
conditions as at room temperature and 3600C for Al and 
AZ31 alloy respectively. Graphite has been used as a 
lubricant in order to prevent the friction between the 
specimens and die channel using procedure route Bc in 
between consecutive passes. The preparation of sample for 
testing involved mechanical polishing using different SiC 
papers in addition, the colloidal Al2O3 and diamond past 
have been used to get mirror finish samples. Polished 
samples were subsequently etched by using Keller’s [12] for 
Al and Picral [12] for AZ31 alloy. The tensile test and 
hardness test were carried out to evaluate the mechanical 
properties of Al and AZ31 alloy.  
 
Fig.2 shows the tensile test specimen with a gauge length 
and a diameter of 14.5mm and 5mm prepared as per ASTM 
E-8 standards and tested using Hounsfield Tensometer test 
rig. Hardness test was carried out using Vickers 
microhardness test rig by applying a load of 100g with 

dwell time of 13s for AZ31 alloy and for Al the dwell time 
is 5s with the same load.  
 

 

          All dimensions are in mm 

                    Fig.2 Dimensions of tensile test specimen  

3 RESULTS & DISCUSSION 
3.1 Tensile Properties 
Engineering stress verses engineering strain curves of Al 
and AZ31 alloy have been measured and drawn from force 
vs. distance graph for two passes as illustrated in Fig.3 and 
Fig.4. The measured values of ultimate tensile strength 
(UTS), Yield strength (YS) and the percentage elongation of 
these materials have been tabulated for better understand 
of variations among them in Table 1.  
 

TABLE 1  

MECHANICAL PROPERTIES OF PURE AL AND AZ31 MG ALLOY 
BEFORE AND AFTER ECAP PROCESS. 

 UTS 
(MPa) 

   YS 
(0.2%) 
(MPa) 

Elonga-
tion  
(%) 

Hard-
ness 
(HV) 

unECAPed Al 237 194 35.4 75 
First passed Al 282 237 21.9 80 
Two passed Al 285 243 27.9 83 
unECAPed AZ31 232 105 20.4 51 
First passed AZ31 242 165 13.6 69 
Two passed AZ31 227 122 21.9 72 

 
The UTS and YS of Al have been increased greatly as 20% 
and 25% respectively and the elongation was decreased to 
around 26.9% with decreasing in grain diameter after 
second pass (Fig.3). In AZ31 alloy, YS and percentage 
elongation of AZ31 alloy have been found to be increased 
to 16% and 7.3% respectively with decreasing in grain 
diameter (Fig.4). The variations among curves in Al have 
found to be large, where as in AZ31 alloy, it was observed 
to be small because of plastic anisotropy. In both the 
materials, YS had a good relationship with hardness by 
increasing the number of passes. The elongation of the Al 
material has been decreased, while AZ31 alloy it was 
increased with increasing number of passes because of 
processing temperature.  
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Fig.7 Variations of micro hardness with ECAP passes 

The percentage increase in hardness of Al and AZ31 alloy 
have been found to be 10.7% and 41.1% respectively. In 
here, the Hcp structured material was increased greatly at 
elevated temperature of 3600C as compared to Fcc 
structured material processed at room temperature, because 
of reduction in grain diameter. Hence, the temperature and 
variation in grain diameter have been observed the factors 
influenced to improve the hardness of the material.   

4 CONCLUSIONS 
Fcc and Hcp structured material mechanical properties have 
been calculated and discussed by evaluating 
microstructures observed from image analyzer at different 
working conditions. In the current work, following 
determinations can be drawn from experimental 
observations:  

 The average grain size of Al and AZ31 alloy was found 
to be reduced to 5µm and 2.8µm respectively, though 
they have done at different working conditions with 
large die angle. 

 Yield strength for both materials has been improved by 
refining grain diameter with increasing number of 
passes. 

 Even though materials have different structures, the 
processing temperature was influenced to varying 
percentage of elongation by increasing in number of 
passes.  

 Hardness of Al and AZ31 alloy has been increased with 
reduction of grain diameter at different working 
conditions to route Bc.  
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